imOmics in Action

Revolutionary research on ionic and molecular fluxes and its real-world applications

Recent NMT Publications 05/09/24

A quick look at some recent NMT Publications from 2024

A method for separating tonoplast from wheat
Zhou H, Zhang M, Chang Y, Feng C, Long Y. A method for separating tonoplast from wheat. J Plant Physiol. 2024 Apr 24;299:154258. doi: 10.1016/j.jplph.2024.154258. Epub ahead of print. PMID: 38761672.




The VAMP-associated protein VAP27-1 plays a crucial role in plant resistance to ER stress by modulating ER-PM contact architecture in Arabidopsis
Man Y, Zhang Y, Chen L, Zhou J, Bu Y, Zhang X, Li X, Li Y, Jing Y, Lin J. The VAMP-associated protein VAP27-1 plays a crucial role in plant resistance to ER stress by modulating ER-PM contact architecture in Arabidopsis. Plant Commun. 2024 Apr 27:100929. doi: 10.1016/j.xplc.2024.100929. Epub ahead of print. PMID: 38678366.




ZmHAK17 encodes a Na+-selective transporter that promotes maize seed germination under salt conditions
Wang L, Wang Y, Yin P, Jiang C, Zhang M. ZmHAK17 encodes a Na+-selective transporter that promotes maize seed germination under salt conditions. New Crops. 2024;100024.https://doi.org/10.1016/j.ncrops.2024.100024




Increasing Ca2+ accumulation in salt glands under salt stress increases stronger selective secretion of Na+ in Plumbago auriculata tetraploids
Duan Y, Jiang L, Lei T, Ouyang K, Liu C, Zhao ZA, et al. Increasing Ca2+ accumulation in salt glands under salt stress increases stronger selective secretion of Na+ in Plumbago auriculata tetraploids. Frontiers in Plant Science. 15, 1376427.https://doi.org/10.3389/fpls.2024.1376427




A viral protein competitively bound to rice CIPK23 inhibits potassium absorption and facilitates virus systemic infection in rice
Jing X, Wang P, Liu J, Xiang M, Song X, Wang C, Li P, Li H, Wu Z, Zhang C. A viral protein competitively bound to rice CIPK23 inhibits potassium absorption and facilitates virus systemic infection in rice. Plant Biotechnol J. 2024 Apr 5. doi: 10.1111/pbi.14350. Epub ahead of print. PMID: 38578842.




Populus euphratica PeNADP-ME interacts with PePLDδ to mediate sodium and ROS homeostasis under salinity stress
Zhang Y, Zhao Z, Liu Z, Yao J, Yin K, Yan C, Zhang Y, Liu J, Li J, Zhao N, Zhao R, Zhou X, Chen S. Populus euphratica PeNADP-ME interacts with PePLDδ to mediate sodium and ROS homeostasis under salinity stress. Plant Physiol Biochem. 2024 Apr 4;210:108600. doi: 10.1016/j.plaphy.2024.108600. Epub ahead of print. PMID: 38593488.




Populus euphratica R2R3-MYB transcription factor RAX2 binds ANN1 promoter to increase cadmium enrichment in Arabidopsis
Yan C, Feng B, Zhao Z, Zhang Y, Yin K, Liu Y, Zhang X, Liu J, Li J, Zhao R, Zhao N, Zhou X, Chen S. Populus euphratica R2R3-MYB transcription factor RAX2 binds ANN1 promoter to increase cadmium enrichment in Arabidopsis. Plant Sci. 2024 Apr 6;344:112082. doi: 10.1016/j.plantsci.2024.112082. Epub ahead of print. PMID: 38583807.




Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii
Cao K, Jaime-Pérez N, Mijovilovich A, Morina F, Bokhari SNH, Liu Y, Küpper H, Tao Q. Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii. Ecotoxicol Environ Saf. 2024 Apr 15;275:116272. doi: 10.1016/j.ecoenv.2024.116272. Epub 2024 Apr 1. PMID: 38564870.




Early signaling enhance heat tolerance in Arabidopsis through modulating jasmonic acid synthesis mediated by HSFA2
Guo Z, Zuo Y, Wang S, Zhang X, Wang Z, Liu Y, Shen Y. Early signaling enhance heat tolerance in Arabidopsis through modulating jasmonic acid synthesis mediated by HSFA2. Int J Biol Macromol. 2024 Mar 29;267(Pt 2):131256. doi: 10.1016/j.ijbiomac.2024.131256. Epub ahead of print. PMID: 38556243.




Cadmium-resistant bacterium Ralstonia sp. YDR alleviated Cd toxicity in rice seedlings by enhancing antioxidant defense and inhibiting Cd2+ influx and H+ efflux
Yin DX, Niu LL, Liu J, Yang R, Han B, Liu ZY, et al. Cadmium-resistant bacterium Ralstonia sp. YDR alleviated Cd toxicity in rice seedlings by enhancing antioxidant defense and inhibiting Cd2+ influx and H+ efflux. Environmental Technology & Innovation. 103614.https://doi.org/10.1016/j.eti.2024.103614


Recent NMT Publications 06/10/24
Recent NMT Publications 04/06/24

Related Posts

 

Comments

No comments made yet. Be the first to submit a comment
Already Registered? Login Here
Guest
Sunday, 22 December 2024
If you'd like to register, please fill in the username, password and name fields.