• Jaffe LF and Nuccitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents. Journal of Cell Biology, 1974, 63: 614 - 628

  • Kühtreiber WM and Jaffe LF. Detection of extracellular calcium gradients with a calcium specific vibrating electrode. Journal of Cell Biology, 1990, 110: 1565 - 157

  • Kochian, L V, Shaff J E, Kuhtreiber W M, Jaffe L F & Lucas W J (1992) Use of an extracellular, ion-selective microelectrode system for the quantification of K+, H+, and Ca2+ fluxes in maize roots and maize suspension cells. Planta 188, 601-610.

  • Arif I. & Newman I.A. (1993) Proton efflux from oat coleoptile cells and exchange with wall calcium after IAA or fusicoccin treatment. Planta. 189, 377-383.

  • Smith, P.J.S. (1995). The non-invasive probes - tools for measuring transmembrane ion flux. Nature 378:645-646.

  • Shabala S.N., Newman I.A. & Morris J. (1997) Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of external pH. Plant Physiology 113, 111-118.

  • Xu Y, Sun T, Yin LP (2006). Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. J Integr Plant Biol 48(7):823-831

  • Marshall Porterfield(2007), Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: Recent developments in self-referencing amperometry for physiological sensing, Biosensors and Bioelectronics, Volume 22, Issue 7, 15 February 2007, Pages 1186-1196, ISSN 0956-5663

  • Hawkins BJ, et al.A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources. Plant, Cell & Environment. 2008, 31(3): 278–287.

  • Nemchinov LG, et al. Calcium efflux as a component of the hypersensitive tesponse of Nicotiana benthamiana to Pseudomonas syringae. Plant Cell and Physiology, 2008, 49(1): 40-46.

  • Ramos AC, et al. A pH signaling mechanism involved in the spatial distribution of calcium and anion fluxes in ectomycorrhizal roots. New Phytologist, 2009, 181(2): 448–462.

  • Sun J, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology, 2009, 149: 1141 - 1153.

  • Sun J, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant, Cell and Environment, 2010, 33: 943 - 958.

  • Jeworutzki E, et al. Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels.The Plant Journal. 2010,62(3):367–378.

  • Alavian KN et al.Bcl xL regulates metabolic ef ciency of neurons through interaction with the mitochondrial F1F0 ATP synthase. Nature Cell Biology, 2011, 13(10): 1224-1233.

  • Michard E, et al. Glutamate receptor–like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science, 2011, 332(6028): 434-437.

  • Laohavisit A, et al. Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+- and K+-permeable conductance in root cells. Plant Cell, 2012, 24(4): 1522-1533.

  • Li J, et al. Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus × canescens under NaCl stress. Plant Physiology, May 2012 pp.112.195370